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Introduction

Different Large Language Models (LLMs) exhibit distinct “personalities” and
generation patterns, even when given identical prompts. These differences stem
from differences in model training data, architecture, size, system prompts,
and hyper parameters like temperature in softmax. This project investigates
whether these differences can be leveraged to determine the model “lineage”
(source model) of LLM-generated text through classification tasks. Specifically,
I sought to address 3 questions in a very limited LLMs experiment:

1. Can LLMs detect their own text?

2. Can standard classifiers do better?

3. How much text do we need to identify model lineages?

This report walks through some brief experiments to address these topics.
It concludes with a brief discussion of my results, links to all the code, data,
model checkpoints, and a basic front-end Hugging Face interface that attempts
to distinguish Claude, ChatGPT, and human texts under narrow conditions.

Base Dataset and Data Generation

I first sought to build a dataset of LLM texts that could be paired with hu-
man text for classification and analysis. Therefore the project required a base-
line dataset of human-written text that would serve as a foundation for LLM
replication. The ideal dataset would contain English texts of a few hundred
tokens, covering diverse subjects while maintaining certain stylistic consisten-
cies. Moreover, they would need to be processable by the LLMs, for example
by not containing any threatening or racist remarks. These texts would then be
used to generate “synthetic twins” - the same content rewritten in each LLM’s
distinctive style. Finally, I wanted to ensure that no LLM-generated text would
contaminate the human dataset, so I specifically searched for texts from prior
to 2022.
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The IMDB movie review dataset, made available by Stanford AI Laboratory
in 2011, met these criteria well. The reviews cover thousands of different films
from around the world, all written in English. The reviews were often highly
polarized, but never crossed the boundary into threatening or “NSFW” content.
From the original 25,000 reviews, I randomly selected 2,000 reviews between 125-
275 tokens, covering roughly the middle 3 quartiles of the length distribution,
to ensure consistency in length and scope.

Using the OpenAI and Anthropic APIs, I generated 6,000 synthetic texts
(2,000 each) using three distinct models:

1. GPT-4o-mini

2. GPT-3.5-turbo

3. Claude-3.5-sonnet

These models were chosen strategically to represent: 1) Different training
architectures and methods (Anthropic vs OpenAI) 2) Different versions within
the same model family (GPT-3.5 vs GPT-4) and 3) Models in widespread public
use with reliable API access. Each model received the following prompt:

“You will receive a text excerpt. Please write a new passage of sim-
ilar length that covers the same key points and maintains a similar
style, but using your own words. Write a new version that:

• Maintains similar length

• Covers the same main ideas

• Uses similar tone/style

• Feels natural and coherent

Return only your new version.”

Generations for all three models completed in approximately 6 hours. The
OpenAI API completed all generations on the first pass. The Anthropic API
occasionally returned rate overflow errors, in spite of a short implicit sleep timer
after each generation. A second pass over the dataset completed the few missing
texts from the Anthropic API. The final dataset comprises 8,000 texts: 2,000
human originals and 2,000 generated versions from each of the three models for
a total of 6,000 AI texts.

The length distributions across all sources remained broadly consistent, sug-
gesting a successful adherence to the length maintenance instruction. However,
all LLMs produced synthetic reviews that were slightly shorter than their human
counterparts on average.

To eliminate potential classification biases, preprocessing on human and gen-
erated texts consisted only of standardizing ascii encoding across all texts. No
other changes were made to the human or AI texts.
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Figure 1: Length Distributions of Human and Generated Texts

Figure 2: Sample Reviews for Movie Review 196

3



Human Claude GPT-4 GPT-3.5
Word Freq Word Freq Word Freq Word Freq
movie 3326 film 2568 film 3617 film 2850
film 2384 like 1052 one 1107 movie 2536
one 1507 one 1037 like 933 like 1009
like 1294 movie 936 movie 808 one 894
good 1003 even 904 even 701 even 751
would 807 though 784 would 670 characters 588
even 789 character 560 yet 646 would 537
really 772 particularly 551 films 586 character 528
see 752 story 547 might 568 however 524
time 746 could 534 could 565 despite 523

Table 1: Most Frequent Words by Source (Excluding Stop Words)

Some brief exploration of the texts

To better understand potential differences between human and AI-generated
movie reviews, I conducted a basic lexical analysis. After removing stopwords,
I examined token frequencies across all four sources (Table 1) and performed
chi-square tests of homogeneity on selected key words (Figure 3). While many
patterns emerged, three stood out as particularly interesting.

First, the most common content words showed distinct preferences across
sources. GPT-3.5 used “movie” substantially more frequently than other sources
(2,536 occurrences vs. 1,000 for others), while all sources heavily used “film.”
This hints at potential vocabulary limitations or preferences in the models’
training.

Second, human reviews showed notably higher usage of informal or colloquial
language. The word “like” appeared 1,294 times in human reviews compared to
around 1,000 in AI reviews, and “really” made the top 10 list only for human
reviews. This suggests that despite instructions to maintain style, the models
tend toward slightly more formal language.

Most tellingly, the models showed clear preferences for formal transition
words. Words like “however” (524), “despite” (523), and “yet” (646) appeared
frequently in AI-generated reviews but didn’t make the human top 10. Chi-
square tests confirmed these differences were highly significant (all p < 0.001),
with transition words showing the strongest effect sizes (Cramer’s V > 0.15).

These patterns suggest that even when explicitly instructed to mimic human
writing style, LLMs maintain certain “tells” in their word choice.

Question I: Can LLMs detect their own text?

A superficial analysis of human texts and their LLM counterparts revealed that
distinguishing between the two was almost impossible for me as a human ob-
server. Subtle stylistic choices sometimes hinted at a text’s human origin. For in-
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Figure 3: Term Frequencies with P-values on Chi-square

stance, a phrase like, “Anybody with a 50 IQ or above would hate this movie...”
might be rephrased by the LLMs as, “Anybody with reasonable intelligence
would hate this movie,” or something equally softened. This difference likely
reflects the LLMs’ fine-tuning to adhere to content guidelines and avoid overtly
offensive language.

To establish a baseline for discrimination, I tested whether the LLMs them-
selves could identify the source of a given text. My hypothesis was that the
models might possess an implicit “sense” of their own outputs, based on the
probability distributions underlying their token predictions.

I randomly sampled 100 indices from the dataset, resulting in 400 reviews
(100 each from human, Claude, GPT-4, and GPT-3.5). The LLMs were tasked
with classifying the source of each review using the following prompt:

“You will be shown a movie review. In the set of reviews you’ll
analyze, exactly 25 percent were written by humans, 25 percent by
Claude, 25 percent by GPT-4, and 25 percent by GPT-3.5.

Your task is to identify the most likely source of each review. You
must respond with exactly one of these four options:

• “Human”

• “Claude”

• “GPT-4”

• “GPT-3.5”
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Important: Return ONLY one of these four options with no addi-
tional commentary or explanations.”

This setup treated the task as zero-shot classification, with an additional
statistical prior explicitly provided to the models: they were told the exact dis-
tribution of sources (25% each from human, Claude, GPT-4, and GPT-3.5). My
hypothesis was that if LLMs could recognize characteristic patterns in writing
style, this balanced framing would help elicit meaningful classifications.

The results revealed two striking patterns. First, when performing this task,
LLMs showed strong biases that seemed more reflective of their training data
than any ability to recognize writing styles. They overwhelmingly favored label-
ing texts as “Human,” even when explicitly told that 75% of the reviews were
AI-generated. This tendency artificially inflated their accuracy on human text
classification (Figure 3) through what amounts to a default prediction strategy
rather than actual detection capability.

Second, and perhaps more telling, was the models’ treatment of Claude-
generated text. None of the models regularly attributed text to Claude, with
Claude itself only self-identifying once in 400 samples, and GPT-4 doing so just
3 times. GPT-3.5, notably, never predicted Claude as a source - but this makes
sense given its training cutoff predates Claude’s widespread availability. This
pattern strongly suggests the models aren’t actually recognizing stylistic pat-
terns in the text, but rather making predictions based on what sources they’ve
been trained to expect. The fact that even Claude rarely identifies its own text
as Claude-generated further reinforces this interpretation.

These findings challenge the notion of LLM “self-recognition” as a meaning-
ful capability. Rather than detecting genuine stylistic fingerprints, the models
appear to base their predictions primarily on source frequencies in their training
data. This might explain why newer models, despite their increased capabilities,
appear even less adept at this task than their predecessors - they may be better
at avoiding unfounded attributions when faced with uncertainty.

Question II. Can standard classifiers do better?

I next sought to treat this as a standard 4-class classification task. First, I
embedded the texts.

The embedding strategy employed BERT-Large (accessed via the Transform-
ers library) to produce 1,024-dimensional vectors for each text. This choice was
deliberate, as I hypothesized that higher-dimensional embeddings could capture
subtle, nuanced differences in language style and structure between the outputs
of various LLMs, potentially facilitating better discrimination between classes.

To enhance the quality of embeddings, I used an attentional pooling strat-
egy. Specifically, attention mechanisms were applied to weigh tokens within
each text based on their relative importance, allowing the embeddings to em-
phasize semantically significant elements. This method captures contextual nu-
ances and relationships that might be critical for distinguishing between similar
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Figure 4: LLM Self-recognition performance
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text sources, such as different versions of GPT or human-written reviews. For
instance, attentional embeddings may give greater weight to tone, sentence con-
struction, or word choice, all of which could subtly differ between model outputs.

With the resulting set of 8,000 embeddings (2,000 for each class: human,
GPT-3.5, GPT-4, and Claude), I tested a variety of classifiers to evaluate
whether the task of identifying model lineage was feasible. The classifiers tested
included:

• Logistic regression

• A simple multilayer perceptron (MLP)

• Support vector machine (SVM)

• XGBoost

• Random Forest

All classifiers were trained and evaluated using a consistent 80-20 train-test
split on the embedding dataset. This ensured that the evaluation metrics were
directly comparable across methods, providing insight into which approach was
most effective for this classification problem.

Model Accuracy Precision Recall F1
Logistic Regression 0.844 0.845 0.844 0.844
Neural Network 0.832 0.831 0.832 0.831
SVM 0.807 0.807 0.807 0.807
XGBoost 0.736 0.735 0.736 0.735
Random Forest 0.653 0.650 0.653 0.651

Table 2: Comparison of Model Performance Metrics

The performance appears suspiciously strong at first glance, particularly
for logistic regression. It is noteworthy that logistic regression outperformed
more complex models, such as neural networks and XGBoost, suggesting that
the classes might exhibit patterns in the BERT-Large embedding space that
are exploitable by simpler models. However, visualizations using t-SNE and
UMAP (Figure 5) reveal that while there are clusters corresponding to different
sources, these clusters are not linearly separable. The embeddings suggest over-
lap between human and GPT-4 texts, with Claude and GPT-3.5 forming tighter
concentrations within the larger embedding space. This overlap aligns with the
observation that human-generated texts exhibit greater stylistic diversity, while
LLM outputs are more constrained by their training and generation processes.
The results suggest that the strong performance of logistic regression and SVM
likely stems from the embedding space capturing subtle, non-linear patterns.

Additionally, in both the t-SNE and UMAP visualizations, a small side
cluster comprising approximately 5–10% of the points was observed, containing
samples from all four classes. This cluster likely represents texts with shared
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Figure 5: UMAP of Embeddings

stylistic or lexical traits that reduce distinctions between sources, such as highly
generic or neutral phrasing. The presence of this cluster suggests certain texts
occupy ambiguous embedding regions, potentially contributing to the overlap
and misclassification observed in the model performance.

To see if I could surpass the performance of logistic regression, I built a
more complex 5-layer MLP with dropout regularization and batch normaliza-
tion. This model managed to outperform the baseline logistic regression but
only by approximately 2

One intuitive result is that the models exhibit higher confusion between
different versions of the same model (i.e., GPT-3.5 and GPT-4) compared to
cross-model or cross-source comparisons (e.g., Claude vs. GPT, or LLM vs.
human). This is evident in the confusion matrices for both the baseline logistic
regression and the ”complex” MLP, as shown in Figure 6.

Question III. How much text do we need?

If LLMs leave ”fingerprints” that enable classification in high-dimensional em-
bedding spaces, an important question is: how much text is actually needed
to detect these fingerprints? To explore this, I repeated the same procedure of
embedding texts using BERT-Large and training a logistic regression classifier,
but this time I progressively truncated the original texts.
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Figure 6: LogReg and MLP Confusion Matrices

The truncation process began with reducing the texts to the first 100 tokens
(roughly two-thirds of the average review length). I then repeated the procedure
for lengths of 75 tokens, 50 tokens, 25 tokens, 10 tokens, 5 tokens, and finally
just 3 tokens. The F1 scores for each truncation are shown in Figure 3.

As expected, F1 scores degrade progressively as text length decreases. Specif-
ically, there is an approximately 0.15 drop in F1 score when reducing the text
length from 100 tokens to 50 tokens, followed by more rapid declines with fur-
ther truncation. Even with just 3 tokens per text, the classifier achieves an
accuracy approximately 5% above random chance.

I found this finding notable: the first 3 tokens appear sufficient to “buy”
a small but measurable accuracy boost, while adding 3 more tokens to near-
complete texts contributes comparatively less. This suggests that the semantic
and stylistic fingerprints left by LLMs are detectable even in the opening words
of a text, where patterns in phrasing, style, or token choice can differ subtly
from human writing.

Key takeaways

• Humans and LLMs use words differently. Basic lexical analysis suggests
that there are a few potential “tells” for naive detection of AI generated vs.
human text. Not surprisingly, human movie reviews favor informal and
colloquial language, using words like “like” and “really” more frequently,
while AI reviews exhibit a strong preference for formal transition words
such as “however,” “despite,” and “yet.” These differences, confirmed by
chi-square tests with significant effect sizes, are likely generalizable to some
other domains of human and LLM text. If this pattern holds broadly, then
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Figure 7: F1 Scores for Different Text Truncations with LogReg

adding tokens like “really” and “like” to AI-generated text is probably
among the best “bang for your buck” approaches to beating LLM text
detectors.

• Popular LLMs like Claude and GPT-4o perform poorly at identifying
LLM-generated text when treated as a zero-shot task. Newer models,
in particular, demonstrate a strong bias toward attributing text to hu-
mans and are especially poor at self-recognition. Given these results, I
won’t be asking LLMs to try to identify whether something is human or
not.

• When the task is narrowly constrained, such as rewriting and classifying
movie reviews, high-dimensional attentional embeddings enable reason-
ably accurate classification, achieving over 80% accuracy in some cases.
Class-specific accuracies align broadly with intuition: there is greater con-
fusion between versions of the same model (e.g., GPT-3.5 and GPT-4)
compared to cross-model or cross-source confusion (e.g., GPT vs. Claude
or LLM vs. human). The strong performance of simpler models like lo-
gistic regression and SVM might have suggested some linear separability
in the BERT-large embedding space, but further inspection of the space
suggested otherwise. More investigation into why the simpler classifiers
outperform here is something I’ll tackle in a future project.

• Under these constrained conditions, “fingerprints” left by different LLMs
are evident, likely reflecting differences in training data, architectures,
fine-tuning processes, and system prompts. These fingerprints are more
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pronounced when projected into higher-dimensional spaces using trans-
formers, and they begin to emerge even within just a few tokens.

Open Questions and Future Directions

I believe these findings raise many additional questions and potential research
directions:

Generalization to Larger Datasets: The usual question: How well do these
results generalize to larger and more diverse datasets? Would the observed pat-
terns hold across different types of content, such as technical writing, creative
prose, or social media posts?

Scaling to More Models:

Another usual question: How would the approach scale with a larger set of
models, including unfiltered or less-common LLMs like Unholy or NSFW-6b?
At what point might class proliferation effects dilute classification accuracy?

Few-Shot or Many-Shot Self-Recognition:

Some less usual questions: Could LLMs’ self-recognition accuracy improve if
the task is framed as a few-shot or many-shot problem? For instance, what if
models are provided with examples of text generated by themselves or other
models before performing classification? Could this approach help evaluate
models’ “metacognition” or ability to understand their own outputs?

Alternative Classification Strategies:

Also, could entirely different methods work better for attribution? For example,
training attentional autoencoders to encode texts into a latent space and then
reconstruct them. Reconstruction errors might serve as a proxy for attribution,
with lower errors from a model-specific autoencoder suggesting a match to the
model’s text (e.g., a GPT-4o autoencoder producing low reconstruction error
for GPT-4o text).

Formalizing Detection Thresholds:

Finally, can we identify some sort of mathematical “proof” around the detec-
tion thresholds for LLM-generated text. In other words, can we define the
conditions under which it is possible—and not possible—to discriminate be-
tween AI-generated and human-authored content? Such a framework might
extend beyond text to other content modes like images, audio, or video, offering
broader utility across AI detection tasks.
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Utility (i.e., Would somebody be willing to pay for this?):

There is considerable value in being able to reliably identify AI-generated con-
tent, especially in sensitive or high-stakes domains. Applications could include
detecting misinformation, verifying content in legal contexts, moderating social
media platforms, and validating authorship in academic or creative work. The
popularity of tools like GPTZero—despite their widely recognized performance
limitations—underscores the demand for this kind of technology. Teachers, le-
gal professionals, social media moderators, and others could all benefit from
effective AI detection.

That said, there are massive challenges here. Current detectors, including
my own experiments and tools like GPTZero, are highly vulnerable to straight-
forward “hacks.” Simple techniques, such as introducing a few typos, adding
periods between tokens, or using invisible font colors, can render these tools
ineffective. This highlights a critical limitation: many existing approaches are
not robust enough for practical, real-world deployment.

Given these limitations, the experiments conducted here are far from being
ready for a paid service. However, I believe there is some utility in a research
context. The results and questions raised by this project point to a rich area of
study with significant implications. Future research could delve deeper into de-
tection robustness, explore generalized frameworks for identifying AI-generated
content, and develop tools better suited for real-world deployment.

A Quick Front-end

The final MLP for movie review classification is deployed on Hugging Face (Fig-
ure 6):

https://huggingface.co/spaces/datboyalex/LLM_movie_review_detector

Due to the discontinuation of GPT-3.5 turbo on ChatGPT, the GPT-4o-mini
and GPT-3.5-mini classes have been aggregated into a single “ChatGPT” class
for simplicity in this implementation.

As expected, the model performs well on reviews from its original dataset.
However, in my limited testing with new IMDB movie reviews, it achieves only
about 50% accuracy. This lower performance is likely due to overfitting on
the training set, which was relatively small, as well as shifts in online writing
styles since the original IMDB reviews were produced. For instance, the model
frequently overpredicts recent human reviews (e.g., reviews for the 2024 movie
Wicked) as AI-generated. That said, it’s entirely possible that some IMDB
reviewers are in fact using tools like ChatGPT or Claude to author or co-author
their reviews.

The model’s decision boundaries are another limitation. It often outputs
100% confidence for its predictions, likely a reflection of overly-rigid classifica-
tion. Interestingly, the tool demonstrates some capability to correctly identify
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Figure 8: Front end interface, tested on a real human review of The Shawshank
Redemption (1994) not appearing in the original dataset

LLM-generated texts unrelated to movies. However, it is important to stress
that this tool is highly limited and should not be used for formal LLM detection.

So, while the model serves as a marginally interesting proof of concept, it is
not reliable for robust LLM detection. For more details on its performance and
limitations, refer to the attached demonstration video included with this report.

Data, Documentation, and Code

All project-related data, documentation, and code are available on GitHub. You
can access the repository at:

https://github.com/alex-amari/llms_final_project.

Technology and Sources

The entire project was implemented in Python, primarily using Google Colab
for development and experimentation. All model training was conducted on an
NVIDIA A100 GPU, while the front-end was hosted on Hugging Face Spaces
using a CPU Basic cluster.

• Transformers Library: Used for embedding generation with BERT-
Large.

• IMDB Movie Reviews Dataset: Used as human baseline texts.
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• BERT-Large: Provided high-dimensional embeddings for text classifica-
tion.

• Claude 3.5 Sonnet: Utilized for project assistance.

• Anthropic API: Utilized for text generation

• GPT-3.5 Turbo and GPT-4o Mini: Documentation for these models
informed text generation processes.

• GPT-o1: Utilized for project assistance.

• GPTZero: Highlighted as an example of current AI detection tools.
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